Macrophage/microglia activation factor expression is restricted to lesion-associated microglial cells after brain trauma.

نویسندگان

  • Anna Lünemann
  • Oliver Ullrich
  • Antje Diestel
  • Thomas Jöns
  • Olaf Ninnemann
  • Adam Kovac
  • Elena E Pohl
  • Ralf Hass
  • Robert Nitsch
  • Sven Hendrix
چکیده

After traumatic brain lesion, microglial cells are rapidly activated, migrate toward the sites of injury, and cause secondary damage that accounts for most of the loss of brain function. In the present study, we have characterized a new macrophage/microglia activation factor (MAF). Using the monocytic cell line U937, we were able to demonstrate that MAF is upregulated after TPA-induced differentiation into macrophages. We have generated a specific antibody against MAF. In BV-2 microglial cells, MAF is partially co-localized with IB4, a classical microglial marker. In addition, we have analyzed the in vivo expression patterns of MAF after entorhinal cortex lesion. We were able to show a substantial upregulation of MAF on selected CD11b(+) and IB4(+) macrophages/microglial cells in the deafferented hippocampus and in the perilesional region, while no MAF expression was detectable on the contralateral side. Confocal microscopy revealed a lysosome-like expression pattern in BV-2 cells, as well as in ECL-associated macrophages/microglial cells in vivo. Furthermore, we were able to demonstrate that U937 cells with downregulated MAF converted slower and to a significantly reduced extent to the macrophageal phenotype after TPA treatment. In addition, MAF downregulation in BV-2 microglial cells substantially reduced the phagocytotic uptake of dextran beads. Our data indicate that MAF is expressed in selected macrophages/microglial cells around the lesion and in the degenerating hippocampus after ECL. Furthermore, MAF expression in monocytic cells seems to play a functional role in the differentiation to a phagocytosing phenotype and may be, at least partially, required for phagocytotic activity, specifically in lesioned tissue after brain trauma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells

Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

P 155: The Roles of Microglia in Neurodegenerative Diseases

Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2006